Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fatimazohra Lenda, ${ }^{\text {a }}$ Farhate
Guenoun, ${ }^{\text {a }}$ Bouchra Tazi, ${ }^{\text {b }}$ Najib Ben larbi, ${ }^{\text {c }}$ Jean Martinez, ${ }^{\text {d }}$ Frédéric Lamaty ${ }^{\mathrm{d}}$ and Hassan Allouchi ${ }^{\mathbf{e} *}$
${ }^{\text {a }}$ Faculté des Sciences, BP 4010, Beni M’hamed Meknès, Maroc, ${ }^{\mathbf{b}}$ Ecole National d'Agriculture, Département des Sciences de Base, BP S/40, Meknès, Maroc, ${ }^{\text {c }}$ Faculté des Sciences Mohamed Ben Abdellah, Dhar El Mehraz, Fès, Maroc, ${ }^{\text {d LAPP, UMR 5810-CNRS, Université }}$ Montpellier 1 et 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France, and ${ }^{\text {e }}$ Laboratoire de Chimie Physique, PIMIR EA 2098, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France

Correspondence e-mail:
hassan.allouchi@univ-tours.fr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.108$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A new key intermediate in the synthesis of 6-oxopiperidine-2-carboxylate derivatives

The relative stereochemistry of methyl 6-oxo-5-(5-phenyl-tetrazol-2-yl)piperidine-2-carboxylate, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$, has been determined. It confirms the cis configuration of the piperidine ring as well as the position of the substituent on the tetrazole ring. The packing of the molecules is influenced by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Pipecolic acid derivatives are an important class of compounds, which can be used as starting materials for several synthetic drugs, such as enzyme inhibitors (Perumattam et al., 1991), immunosuppressors (Jones et al., 1989), antibiotics (Sehgal et al., 1983) and mycotoxic agents (Martens \& Scheunemann, 1991). With the aim of developing new tetrazolic alpha-iminoacids derived from pipecolic acid, an analogue of cis-4-(tetrazolylalkyl)piperidine-2-carboxylic acid, giving selective and potential antagonistic activity at the N -methyl-D-aspartic acid receptor (NMDA; Orstein et al., 1991), we have prepared a key intermediate, (I), starting from mesodimethyldibromoadipate (Guha \& Sankaran, 1955).

(I)

The double substitution of the dibromo derivative successively by 5-phenyl- $1 H$-tetrazole and the azide group followed by catalytic hydrogenation led, via an intramolecular aminolysis, to the formation of a racemic mixture of two diastereoisomers ($S S, R R$ and $S R, R S$) with a diastereoisomeric ratio of $5 / 1$. The presence and the ratio of the two diastereoisomers were determined by ${ }^{1} \mathrm{H}$ NMR (300 MHz) analysis of the mixture, but determination of the relative stereochemistry of the piperidine core by this method was not possible. The major diastereoisomer was crystallized in a diethyl ether/ethyl acetate mixture, analysed by X-ray diffraction and shown to contain the $S S$ and $R R$ isomers. Consequently, the relative position of the substituents on the heterocyclic core is cis (Fig. 1). The formation of this isomer can be explained by successive $\mathrm{S}_{\mathrm{N}} 2$ reactions of the Br atoms of the meso-dimethyldibromoadipate, which, after cyclization, would orient the two substituents in a cis position (diastereoisomer $S S, R R$). Nevertheless, this control is not total since some trans isomer

Received 20 April 2004 Accepted 12 May 2004 Online 22 May 2004
(diastereoisomer $S R, R S$) was obtained. Furthermore, the X-ray analysis shows that the first substitution, which corresponds to the alkylation by the 5-phenyl-1H-1-tetrazole, occurred only at the N 2 position of the tetrazole ring. The angles between the $\mathrm{C} 1-\mathrm{C} 13$ and $\mathrm{N} 2-\mathrm{C} 3$ bonds are 148.6 (2) and $145.9(2)^{\circ}$. The angle between the phenyl ring and the tetrazole ring is $13.2(1)^{\circ}$. The crystal cohesion is assured by van der Waals interactions and hydrogen bonding (Fig. 2). Thus, atom N 1 forms a hydrogen bond with atom $\mathrm{O} 3(1-x$, $-y,-z)$, and atom C 3 forms a bond with atom $\mathrm{N} 4\left(x, \frac{1}{2}-y\right.$, $\left.-\frac{1}{2}+z\right)($ Table 1).

Experimental

The title compound was synthesized by successive alkylation of 5-phenyltetrazole in the presence of triethylamine and the action of sodium azide on meso-dimethyldibromoadipate, followed by catalytic hydrogenation over Pd / C. The crystallization was carried out at ambient temperature with a mixture of diethyl ether and ethyl acetate.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
$M_{r}=301.31$
Monoclinic, $P 2_{1} / c$
$a=12.7980(6) \AA$
$b=10.8334(3) \AA$
$c=10.9142(3) \AA$
$\beta=102.79(1)^{\circ}$
$V=1475.63(9) \AA^{3}$

$$
Z=4
$$

$$
D_{x}=1.356 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\theta=1-25
$$

$$
\mu=0.10 \mathrm{~mm}^{-1}
$$

$$
T=296(2) \mathrm{K}
$$

Block, colourless
$0.10 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: none
5170 measured reflections
2563 independent reflections
1777 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(F}\mp@subsup{F}{}{2})]=0.04
wR(F}\mp@subsup{F}{}{2})=0.10
S=1.04
2563 reflections
204 parameters
H atoms treated by a mixture of independent and constrained refinement
```


Figure 1
A view of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view of the crystal packing, showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen interactions as dashed lines.
reduction: DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Guha, P. C. \& Sankaran, D. K. (1955). Org. Synth. Collect. Vol. III, pp. 623-625. Jones, T. K., Mills, S. G., Reamer, R. A., Askin, D., Desmond, R., Volante, R. P. \& Shinkai, I. (1989). J. Am. Chem. Soc. 111, 1157-1159.
Martens, J. \& Scheunemann, M. (1991). Tetrahedron Lett. 32, 1417-1418.
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Orstein, P. L., Schoepp, D. D, Arnold, M. B, Leander, J. D, Lodge, D., Paschal, J. W. \& Elzey, T. (1991). J. Med. Chem. 34, 90-97.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Perumattam, J., Shearer, B. G., Confer, W. L. \& Mathew, R. M. (1991). Tetrahedron Lett. 32, 7183-7186.
Sehgal, S. N., Baker, H., Eng, C. P., Singh, K. \& Veniza, C. (1983). J. Antibiot. 36, 351-354.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

